
Tornado Privacy Solution

Cryptographic Review

Version 1.1

Dmitry Khovratovich and Mikhail Vladimirov
ABDK Consulting

November 29, 2019

1 Introduction

We have been approached by Tornado.Cash to review the protocol and the implementation they have
designed. Tornado.Cash implements an Ethereum zero-knowledge mixer: a smart contract that accepts
transactions in Ether (in future also in ERC-20 tokens) so that the amount can be later withdrawn with
no reference to the original transaction.

2 Protocol description

The mixer protocol has the following functionality:

• Insert/deposit money to the mixer. This can be done in a single transaction with a fixed amount
(denoted by N) of Ether. The N -ETH note is called a coin.

• Remove/withdraw money from the mixer. The N ETH is withdrawn with f Ether sent as a fee to
the mixer owner and (N − f) to the designated recipient. The value f is chosen by the sender.

2.1 Setup

Let B = {0, 1}. Let e be the pairing operation used in SNARK proofs, which is defined over groups of
prime order q.

Let H1 : B∗ → Zp be a Pedersen hash function defined in [Pedb]. Let H2 : (Zp,Zp) → Zp be the
MiMC hash function [AGR+16] defined as a MiMC permutation in the Feistel mode in a sponge mode
of operation1.

Let T be a Merkle tree of height 16, where each non-leaf node hashes its 2 children with H2. It is
initialized with all leafs being 0 values. Later the zero values are gradually replaced with other values
from Zp. Let O(T , l) be the Merkle opening for leaf with index l (value of sister nodes on the way from
leaf l to the root, denoted by R) in tree T .

Let us call k ∈ B248 a nullifier and r ∈ B248 a randomness. Let us denote an Ethereum address of
the coin recipient by A.

Let S[R, h,A, f] be the following statement of knowledge with public values R, h,A, f :

S[R, h,A, f] = {I KNOW k, r ∈ B248, l ∈ B16, O ∈ Z16
p SUCH THAT h = H1(k)

AND O is the opening of H2(k||r) at position l to R} (1)

where A and f are included into the context of the statement. Here h is called nullifier hash and || is
concatenation of bitstrings.

1https://github.com/iden3/circomlib/blob/master/src/mimcsponge_gencontract.js

1

https://github.com/iden3/circomlib/blob/master/src/mimcsponge_gencontract.js

2.2 Deposit 3 IMPLEMENTATION

Let D = (dp, dv) be the ZK-SNARK [Gro16] proving-verifying key pair for S created using some
trusted setup procedure. Let Prove(dp, T , k, r, l, A, f) → P be the proof constructor using dp and
Verify(dv, P,R, h,A, f) be the proof verifier.

Let C be the smart contract that has the following functionality:

• It stores the last n = 100 root values in the history array. For the latest Merkle tree T it also stores
the values of nodes on the path from the last added leaf to the root that are necessary to compute
the next root.

• It accepts payments for N ETH with data C ∈ Zp. The value C is added to the Merkle tree, the
path from the last added value and the latest root is recalculated. The previous root is added to
the history array.

• It verifies the alleged proof P against the submitted public values (R, h,A, f). If verification suc-
ceeds, the contract releases (N − f) ETH to address A and fee f ETH to the mixer owner.

• It verifies that the coin has not been withdrawn before by checking that the nullifier hash from the
proof has not appeared before and if so, adds it to the list of nullifier hashes.

2.2 Deposit

To deposit a coin, a user proceeds as follows:

1. Generate two random numbers k, r ∈ B248 and computes C = H1(k||r)

2. Send Ethereum transaction with N ETH to contract C with data C interpreted as an unsigned
256-bit integer. If the tree is not full, the contract accepts the transaction and adds C to the tree
as a new non-zero leaf.

2.3 Withdrawal

To withdraw a coin (k, r) with position l in the tree a user proceeds as follows:

1. Select a recipient address A and fee value f < N ;

2. Select a root R among the stored ones in the contract and compute opening O(l) that ends with R.

3. Compute nullifier hash h = H1(k).

4. Compute proof P by calling Prove on dp.

5. Send an Ethereum transaction to contract C supplying R, h,A, f, P in transaction data.

The contract verifies the proof and uniqueness of the nullifier hash. In the successful case it sends (N−f)
to A and f to the mixer owner and adds h to the list of nullifier hashes.

3 Implementation

The cryptographic functions for off-chain use are implemented in the circomlib library2. The Solidity
implementation of Merkle tree, deposit, and withdraw logic is by the authors3. The Solidity implemen-
tation of MiMC is by iden34. The SNARK keypair and the Solidity verifier code are generated by the
authors using SnarkJS. The other protocol logic (e.g., Ethereum transaction composition, SNARK proof
construction calls) is by the authors5.

2https://github.com/iden3/circomlib/tree/master/circuits
3https://github.com/peppersec/tornado-mixer/tree/master/contracts
4https://github.com/iden3/circomlib/blob/master/src/mimcsponge_gencontract.js
5https://github.com/peppersec/tornado-mixer/blob/master/cli.js

2

https://github.com/iden3/circomlib/tree/master/circuits
https://github.com/peppersec/tornado-mixer/tree/master/contracts
https://github.com/iden3/circomlib/blob/master/src/mimcsponge_gencontract.js
https://github.com/peppersec/tornado-mixer/blob/master/cli.js

5 ANALYSIS

4 Security claims

Tornado claims the following security properties of Mixer:

• Only coins deposited into the contract can be withdrawn;

• No coin can be withdrawn twice;

• Any coin can be withdrawn once if its parameters (k, r) are known unless a coin with the same k
has been already deposited and withdrawn.

• If k or r is unknown, a coin can not be withdrawn. If k is unknown to the attacker, he can not
prevent the one who knows (k, r) from withdrawing the coin (this includes all cases of front-running
a transaction).

• The proof is binding: one can not use the same proof with a different nullifier hash, another recipient
address, or a new fee amount.

• The cryptographic primitives used by Mixer have at least 126-bit security (except for the BN254
curve where the discrete logarithm problem has something like 100-bit security), and the security
does not degrade because of their composition.

• For each withdrawal every deposit since the last moment when the contract has zero Ether till the
formation of the root in the proof can be a potential coin, though some coins are more likely to be
withdrawn depending on the user behaviour.

5 Analysis

5.1 Hash function issues

Here we investigate the issues related to the use of hash functions in the protocol. There are two functions
in use: Pedersen hash and MiMC.

Pedersen hash issues The Pedersen hash function is derived from vector Pedersen commitment
Cr(x1, x2, . . . , xm) = gx1

1 gx2
2 · · · gxm

m grm+1 where gi are generators of some group G. It is known that
Pedersen commitment is computationally binding and perfectly hiding, which makes it a good candidate
for hashing (these properties have some similarity to collision and preimage resistance, respectively). It
can be demonstrated that a collision for Cr(x1, x2, . . . , xm) implies a discrete logarithm relation among
generators, which reduces the collision resistance to the discrete logarithm complexity in the group. How-
ever, there is some subtlety in adopting Pedersen commitment to hashing arbitrary long bitstrings. Note
that it is collision resistant only when all xi and r have fixed length and do not exceed the group order.

A concrete instantiation by Iden3 and borrowed by Tornado does the following. A bitstring M is
divided into segments Mi of 200 bits max. We need elliptic-curve points Pi as many as segments. Each
segment is partitioned into 4-bit chunks mi,j interpreted as an integer in the set [−8; 8] \ 0. Then one
computes [Pedb]:

H1(M) =
∑
i

Pi

 ∑
0≤j<50

25jmi,j

 . (2)

where summation is the addition on the curve and multiplication is scalar. The actual implementation
for the BN254 curve [Peda] deviates from [Pedb] as it uses only 10 points, so at most 2000 bits can be
hashed.

Note the following properties of the resulting hash function:

1. It adds redundancy to the scalar: only 200 bits are used, whereas the BN254 group has order above
2253, so 53 bits are unused.

3

5.2 User mistakes 5 ANALYSIS

2. It is homomorphic: if we denote by P the vector of generators used in H1, then

HP
1 (M1) + HQ

1 (M2) = H
P||Q
1 (M1||M2). (3)

This property is useful in commitments in many protocols, but for a hash function it is quite
unexpected, and such a hash function should be used with great care. For example, if one computes
a message authentication code (MAC) with this function as H1(K||M) where K is secret then,
obviously, a MAC for M1||M2 can be easily obtained from MAC for M1. Such a property, called
length extension, has been used in many attacks6. It is also insecure to make several hash functions
out of one by using domain separation prefix as Hq(x) = H1(q||x) as it becomes just a public
addend in the formula.

3. During witdrawal the nullifier hash H1(k) is revealed. Looking at each previous deposit with
commitment C, the attacker guesses that it is H1(k||r), and then he can obtain candidate H ′1(r)
using Equation (3).

H1(k||r) = f1(k)P1 + (f2(k) + f3(r))P2 + f4(r)P3; (4)

H1(k) = f1(k)P1 + f2(k)P2; (5)

H ′1(r) = f3(r)P2 + f4(r)P3. (6)

for some arithmetic functions f1, f2, f3, f4. If r has low entropy, the attacker can check his guess
and thus break the anonymity of the scheme.

4. It requires an elliptic curve arithmetic to be implemented. The current implementation of Pedersen
hash used by Tornado relies on a very new elliptic curve BabyJubJub.

We found no way to exploit these properties in the concrete protocol by Tornado: the authors
use the Pedersen hash in a proper way. For all future protocol that might rely on this one, the following
steps must be taken:

• Always call Pedersen hash with same message length.

• If messages of different lengths must be used, generate a completely new set of generators for each
length.

MiMC issues There is an attack on the blockcipher version of MiMC [Bon19], which does not apply
to the MiMC hash function (and we do not see any way to do that).

Multiple hash functions Tornado uses two hash functions in the design, and both are used in zero-
knowledge proofs. This is redundant and increases the attack surface: an attack on either design can
break the entire protocol. We thus recommend using only one hash function – MiMC or more efficient
variants (see Section 5.4).

Elliptic curve issues The BN254 curve used for zkSNARKs has security level of only 100 bits ac-
cording to recent cryptanalytic results [BD17]. An attacker with this capacity (though clearly inexistent
nowadays) can forge SNARK proofs and withdraw arbitrary amount of coins from Mixer. We recom-
mend using a curve with higher estimated security (such as BLS12-381) but unfortunately the pairing
operation for such curves has not been added to Ethereum and thus would cost a great amount of gas if
implemented directly.

5.2 User mistakes

In this section we investigate mistakes that are likely to occur in an implementation or done by users.
We check if the protocol is robust to some of them.

6For example, an attack on Flickr http://netifera.com/research/flickr_api_signature_forgery.pdf.

4

http://netifera.com/research/flickr_api_signature_forgery.pdf

5.3 Claim verification 5 ANALYSIS

• Consider the nullifier value k. If k has low entropy, an attacker can guess it, then submit his own
commitment with the same k but different r, and withdraw it. As a result, a nullifier hash H1(k)
will be added to the list and the user will be unable to withdraw his coin. The same situation
occurs if k is stolen.

If user for any reason repeats k (due to buggy software or accidental transaction doubling) or
another user takes the same k, then only one coin with given k can be withdrawn (the first one
tried to be withdrawn), and the others are effectively lost. We recommend to take the position in
the tree as input when computing h, so same commitments in different leafs can still be withdrawn.

• Consider now the randomness value r. If r is stolen or has low entropy, the anonymity is broken
as explained earlier in the text: an attacker can compute H ′1(r) and for every submitted nullifier
he computes the original commitment H1(k, r). In the low entropy case the attacker can verify his
guess against the history of commitments.

If r repeats, nothing bad happens, as it is used only for a proof and no function of it is published
during the withdrawal. As long as k and r together have sufficient entropy, an attacker can not link
two commitments together.

We checked the Tornado random number generator (RNG) in the supplied client code and found that
it yields enough entropy for security. All third-party implementations must ensure a good RNG is
used for secret generation.

5.3 Claim verification

In this section we check the original security claims by the designers.

1. Consider a successful withdrawal with nullifier hash h. A SNARK proof is sound and complete,
so Prover knows k, r, l, O such that h = H1(k) and O(l) opens H1(k, r) to root R. Assuming that
MiMC is collision resistant, H1(k, r) must be a leaf in the tree, so for each withdrawal there must
be a deposit in the tree it refers to. True.

2. Suppose some deposit C has been withdrawn twice. According to the SNARK proof, there must
be a valid (k, r) pair in each case. As H1 is collision resistant, the pairs are the same, but then
nullifier hashes H1(k) must also collide, which is forbidden by the protocol. True.

3. If all k are different, a coin can always be withdrawn if its nullifier is unique. For the nullifier to
repeat, a collision must be found in the nullifier hash function. This contradicts the assumption of
MiMC being collision resistant. True.

4. If k or r are unknown, a coin can not be withdrawn as this would contradict the SNARK proof of
knowledge of k and r. We have not found a way to front run the transaction when k is unknown.
True.

5. A SNARK proof can not be used for another h as the circuit involves the calculation of h. The
recipient address and fee can not be changed either, as long as they are in the SNARK proof context
(this must be checked in the implementation too). True.

6. We have found that all primitives have at least 126-bit security, except for the BN254 curve. It
does not make sense though to increase the security above the BN254 level, since finding discrete
logarithms on it would imply signature forgery in the entire Ethereum, which would be a bigger
problem than the Mixer insecurity. True.

7. It is obvious that if the contract has zero balance, then every earlier deposit has been withdrawn.
We have, however, found one more such case.

Suppose a tree with root R has n leafs, and there has been n withdrawals with proofs for R or an
earlier root. Then all n deposits to R must have been t. Mostly true.

5

5.4 Optimality REFERENCES

5.4 Optimality

We have found several ways to optimize the protocol:

• The value r can be optimized away, since there are two secret variables for each deposit which are
not opened. As long as k has sufficient entropy and different functions are used to compute the
commitment and the nullifier hash, one variable is sufficient. An alternative construction would be

Commitment C = H(k, 0);

Nullifier hash h = H(k, 1, l),

where H is non-homomorphic hash function and l is the tree position. With a 15-byte k, everything
can be packed into two field elements. This construction is also robust to nullifier reuse: in this
case, deposits will be identical but both can still be withdrawn.

• The same hash function can be used for tree hashing, nullifier hashing, and commitment construc-
tion.

• The used hash functions are expensive, particularly Pedersen hash, which has a large codebase and
largest number of SNARK constraints. If the gas costs become too high, an alternative might be
to use a more recent (but not that thoroughly tested) Poseidon [GKK+19] with its 2:1 variant and
the S-box x5 adapted for the BN254 curve. It has 80 S-boxes per call (and 240 constraints) where
it processes two field elements. Thus for the SNARK proof we need 18 calls to Poseidon, thus 4320
constraints in total, a 5x reduction over the current case.

References

[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, et al. “MiMC: Efficient Encryp-
tion and Cryptographic Hashing with Minimal Multiplicative Complexity”. In: ASIACRYPT
(1). Vol. 10031. Lecture Notes in Computer Science. 2016, pp. 191–219 (cit. on p. 1).

[BD17] Razvan Barbulescu and Sylvain Duquesne. “Updating key size estimations for pairings”. In:
IACR Cryptology ePrint Archive 2017 (2017), p. 334 (cit. on p. 4).

[Bon19] Xavier Bonnetain. Collisions on Feistel-MiMC and univariate GMiMC. Cryptology ePrint
Archive, Report 2019/951. https://eprint.iacr.org/2019/951. 2019 (cit. on p. 4).

[GKK+19] Lorenzo Grassi, Daniel Kales, Dmitry Khovratovich, et al. “Starkad and Poseidon: New
Hash Functions for Zero Knowledge Proof Systems”. In: IACR Cryptology ePrint Archive
2019 (2019) (cit. on p. 6).

[Gro16] Jens Groth. “On the Size of Pairing-Based Non-interactive Arguments”. In: EUROCRYPT
2016. Vol. 9666. LNCS. Springer, 2016, pp. 305–326 (cit. on p. 2).

[Peda] Circomlib: Pedersen Hash. https : / / github . com / iden3 / circomlib / blob / master /

circuits/pedersen.circom. 2019 (cit. on p. 3).

[Pedb] Iden3: Pedersen Hash. https://iden3-docs.readthedocs.io/en/latest/iden3_repos/
research/publications/zkproof-standards-workshop-2/pedersen-hash/pedersen.

html. 2019 (cit. on pp. 1, 3).

6

https://eprint.iacr.org/2019/951
https://github.com/iden3/circomlib/blob/master/circuits/pedersen.circom
https://github.com/iden3/circomlib/blob/master/circuits/pedersen.circom
https://iden3-docs.readthedocs.io/en/latest/iden3_repos/research/publications/zkproof-standards-workshop-2/pedersen-hash/pedersen.html
https://iden3-docs.readthedocs.io/en/latest/iden3_repos/research/publications/zkproof-standards-workshop-2/pedersen-hash/pedersen.html
https://iden3-docs.readthedocs.io/en/latest/iden3_repos/research/publications/zkproof-standards-workshop-2/pedersen-hash/pedersen.html

	Introduction
	Protocol description
	Setup
	Deposit
	Withdrawal

	Implementation
	Security claims
	Analysis
	Hash function issues
	User mistakes
	Claim verification
	Optimality

